



# Advanced Product Development Team Team X

Robert N. Miyake
Jet Propulsion Laboratory
13 August, 2002





# Advanced Product Development Team Team X

#### Agenda

Team X Charter

**Concurrent Design Process** 

Cost/Schedule Metrics

Design Team Tools

Distributed Concurrent Engineering (DCE) Process/Tools

Subsystem Design Tools

**Cost Validation** 

Advantages of Team X Process





#### Team-X Charter

The Advanced Projects Design Team ("Team X") was started in April of 1995. The team was chartered to:

- Improve the speed and quality of JPL's new mission concepts.
- Create a reusable study process with dedicated facilities, equipment, procedures, and tools.
- Develop a database of initial mission requirements that can be easily updated and electronically transferred for use in subsequent project phases.
- Develop mission generalists from a pool of experienced engineers.

Over 450 completed studies to date

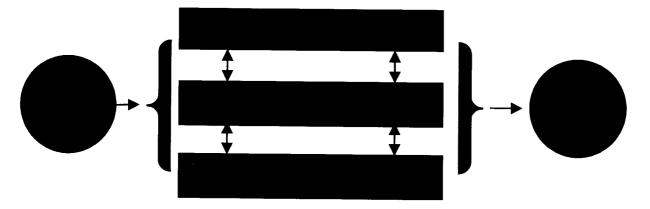




## Concurrent Design Process

## Old Process - Sequential




Provide Staff

Subsystem Design System Trades

Cost

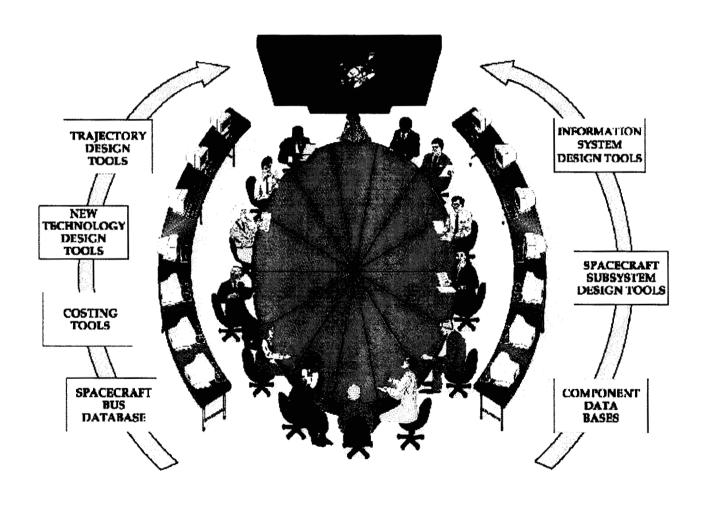
End

### **New Process - Concurrent**








## Cost/Schedule Metrics

|                     | \$10K   | \$100K     | \$250K | \$300K   | \$400K |
|---------------------|---------|------------|--------|----------|--------|
| Proposal Cost (old) |         |            |        |          |        |
| Proposal Cost (new) |         |            |        |          |        |
|                     | Week 1  | 10         | 12     | 26       | 32     |
| Design Time (Old)   |         |            |        |          |        |
| Design Time (New)   |         |            |        |          |        |
| Studies /Year (Old) | 5 10 15 | 5 20 25 30 | 35 40  | 45 50 55 | 60     |
| Studies/Year (New)  |         |            |        |          |        |





# Design Team Tools







#### The DCE Process

- Meet with the customer, define the study and mission objectives.
- Meet with team leaders to determine roles and responsibilities.
- Meet with the customer and a subset of the team to develop requirements and identify pre-session analyses.
- Provide top level requirements and results from pre-session analyses to the combined DCE team.





#### DCE Tools

- Each team uses existing internal tools and processes with minimum modification.
- For external communication we use existing COTS tools:
  - Video teleconferencing utilizing ISDN lines.
  - Meet-me phone lines.
  - NetMeeting and/or Timbuktu application sharing software for visual data sharing.
  - VPN and/or Timbuktu to dynamically share local files.





## Subsystem Design Tools

Design tool used for the Team X studies is an Excel coupled tool.

The Excel tool for all subsystems, as well as programmatics, and systems rollup are interlinked such that an on-put from any subsystem will be routed to all subsystems to which this data is necessary to complete its function.

The reporting tool is Word, and has a notes section as well as a reporting section.



# **CEM Tool**



|                                             | į l   | 1/                      |      | CBE +        | 1               |                 |             |         | NASA   |     |          |
|---------------------------------------------|-------|-------------------------|------|--------------|-----------------|-----------------|-------------|---------|--------|-----|----------|
|                                             | Unit  | Mass Contingency [kg] % |      | Contingency  |                 |                 |             |         |        |     |          |
| TOTAL                                       | Onk   | 7.51                    | 27%  | [kg]<br>9.51 | Science<br>10.1 | Telecom<br>10.1 | TCM<br>10.1 | Cruise  | Launch | TRL | Comments |
|                                             |       | 7.51                    | 217  | 7.31         | 10.1            | 10.1            | 10.1        | 10.1    | 10.1   |     |          |
| The rmal (Spacecraft only)                  |       | 7.44                    |      | 7.44         | 10.1            | 10.1            | 10.1        | 10.1    | 10.1   |     | Assumes  |
| The rmal Subsystem Type<br>(Passive/Active) |       |                         |      |              |                 |                 |             |         |        |     |          |
| Sum of Elements to Check                    |       | 7.51                    | 27%  | 9.51         |                 |                 |             |         |        |     |          |
| Multila yer insula tion                     |       | 4.52                    | 30%  | 5.88         |                 |                 |             |         |        |     | 1        |
| No. of Layers (Type 1 or 2)                 | ł     |                         |      | 1            |                 |                 |             |         |        |     | Type 1   |
| The rmal Surfaces                           | 1     | 0.16                    | 30%  | 0.20         |                 |                 |             |         |        |     | Type I   |
| Films                                       | 1     |                         |      |              |                 |                 |             |         |        |     |          |
| P a ints                                    |       |                         |      |              |                 |                 |             |         |        |     | 1        |
| Tapes                                       |       |                         |      |              |                 |                 |             |         |        |     | I        |
| Thermal Conduction Control                  |       | 0.20                    | 30%  | 0.26         |                 |                 |             |         |        |     | ŀ        |
| Fiberglas                                   | 1     |                         |      |              |                 |                 |             |         |        |     | 1        |
| Diamond                                     |       |                         | ł    |              |                 |                 |             |         |        |     |          |
| Louvers Total Mass                          | 0.0   | 0.00                    | Į.   | 0.00         |                 |                 |             |         |        | :   |          |
| Vairable Emissivity Surface (/m2)           |       |                         |      |              |                 |                 |             |         |        |     | 1        |
| Thermal Radia tor (Unit Area)               | 0.0   | 0.00                    |      | 0.00         |                 |                 |             |         |        |     | }        |
| Thermostats (Number)                        | 10.0  | 0.50                    | 30%  | 0.65         |                 |                 |             |         |        |     |          |
| Heaters (Number)                            | 5.0   | 0.25                    | 30%  | 0.33         |                 | ŀ               |             |         |        |     |          |
| Heat Pipes (per 30 cm)                      | 1.0   | 0.18                    | 30%  | 0.23         |                 |                 |             |         |        |     | 1        |
| Passive / Variable Cond.                    | 0.0   | 0.00                    | İ    | 0.00         |                 |                 |             |         |        |     |          |
| Sensors                                     |       |                         |      |              |                 |                 | j           |         |        |     |          |
| Temperature                                 | 30.0  | 0.30                    | 10%  | 0.33         |                 |                 | 1           |         |        |     | i        |
| Others                                      |       |                         |      |              | -               |                 |             |         |        |     |          |
| Sun Shade                                   |       |                         |      |              |                 |                 |             |         |        |     | İ        |
| Ae ro-S hie ld                              |       |                         |      |              |                 |                 | i           |         |        |     | 1        |
| Special Element                             |       |                         |      |              |                 |                 |             |         |        |     |          |
| RHU's                                       | 0.0   | 0.00                    |      | 0.00         |                 |                 |             |         |        |     | 1.       |
| Propulsion System (Inc. Thermost            |       | 0.00                    |      | 0.00         |                 |                 |             |         |        |     | Assumes  |
| Tank Heaters                                | 4.0   | 0.40                    | 20%  | 0.48         |                 |                 |             |         |        |     |          |
| Line Heaters                                | 10.0  | 1.00                    | 15%  | 1.15         |                 |                 |             |         |        |     |          |
| instrument Thermal Mass/Power               | 10.0  | 1.00                    | 1370 | 1.15         |                 |                 |             |         |        |     |          |
| Estimated Subsystem Cost (\$M FY97)         |       |                         |      |              |                 |                 |             |         |        |     | <u></u>  |
| Zamnawa Bubayatem Cost(JMF 197)             | Earth |                         |      | W            | Phase A         | Phase B         | Phase C     | Phase D |        |     |          |
| NonRec                                      |       |                         |      | Workforce    | 0.07            | 0.50            | 0.524       | 0.971   |        |     |          |
| Non Rec<br>Red                              | 0.91  |                         |      | Dev/Test     |                 | 0.1             | 0.3         |         |        |     | 10       |
| Kea                                         | 1.731 |                         |      | Flt HW       |                 |                 |             | 0.301   |        |     | 10       |
|                                             |       |                         |      | TestHW       |                 |                 |             | 0.25    |        |     |          |



### Thermal Hardware List + Power



Mission:

**Study Name** 

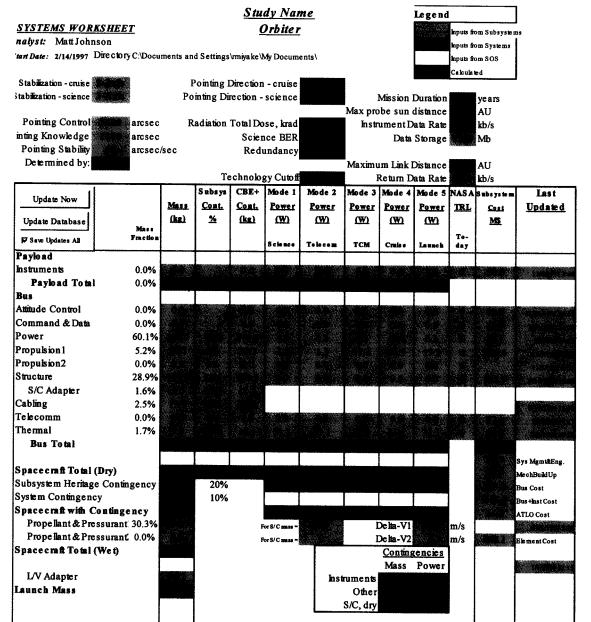
Element:

**Orbiter** 

#### **Thermal System**

#### **Standard Report Equipment List**

ROWS, COLUMNS, AND CELLS MAY BE DELETED FOR PRINT OUT FORMATING PURPOSES WITH USERS CAN ADJUST ROW AND COLUMN WIDTHS TO THEIR OWN PREFERENCES.


| Subsystem Totals | 1 | 7.510 | 20.2 | 10.1 |
|------------------|---|-------|------|------|
|------------------|---|-------|------|------|

| Component                    | Fit<br>Unit<br>s | Mass/<br>Unit (kg) | Total<br>Mass<br>(kg) | Peak<br>Power<br>per Unit<br>(W) | Average<br>Power<br>per Unit<br>(W) |
|------------------------------|------------------|--------------------|-----------------------|----------------------------------|-------------------------------------|
| Multilayer Insulation        |                  |                    | 4.520                 | <u> </u>                         | !<br>                               |
| Thermal Surfaces             |                  |                    | 0.160                 |                                  |                                     |
| Thermal Conduction Control   |                  |                    | 0.200                 |                                  |                                     |
| Louvers Total Mass           | 0                | 0.975              | 0.000                 |                                  |                                     |
| Thermal Radiator (Unit Area) | 0                | 27.000             | 0.000                 |                                  |                                     |
| Heaters/Thermostats          |                  |                    | 2.150                 | 20.2                             | 10.1                                |
| Heat Pipes (per 30 cm)       | 1                | 0.180              | 0.180                 |                                  |                                     |
| Passive Variable Cond.       |                  |                    | 0.000                 |                                  |                                     |
| Temp Sensors                 |                  |                    | 0.300                 |                                  |                                     |
| RHU's                        |                  |                    | 0.000                 |                                  |                                     |



# **System Summary**









#### Cost Validation

Validation the cost of the studies conducted by Team X as compared by actual costs.

There have been about 10 studies used in a validation evaluation.

The Team X cost variation used is  $\pm$  30%.

Of the 10 studies used in the validation evaluation

5 were within  $\pm$  10%

2 were within +/- 20%

2 were within  $\pm$  30 %

Only 1 was out side the  $\pm$ -30 %, and was  $\pm$ 34 %





## Advantages of Team-X Process

- Enables real-time design and resolution of trade issues by all team members.
  - Allows team members to utilize tools while interacting with others
- Allows visibility across subsystem interfaces.
- Enables early agreement and ownership of decisions by all disciplines.
- Improve quality of JPL proposals and pre-projects
  - Facilitates assessment of cost, risk and performance
  - Facilitates assessment of tradeoff and descope options
- Improves phase-A design and saves money and schedule in the design process.